中国循证医学杂志

中国循证医学杂志

大数据时代的循证医学研究

查看全文

循证医学作为一门研究证据的科学,其证据决策思想在大数据时代迎来了发展的契机,研究起点从证据前移至数据。大数据在生产证据、总结加工整合证据、应用证据三个阶段发挥积极作用,可更加便捷地获得证据并不再稀缺,证据将更加客观、公正、可靠、透明并得到全新的应用。因此,在大数据时代下开展循证医学研究,积极构建循证医学智能服务平台,需要制定大数据时代循证医学研究战略,全面提高证据质量;完善大数据基础设施,制定结构化临床数据标准,推动临床研究数据全面公开;大力发展便携式、可穿戴健康监测设备,打通院外随访数据收集和访问通道;建立数据使用规范,规避循证医学研究应用大数据的风险。

As a science which focuses on evidence, the decision making process of evidence medicine encounters an opportunity for development in the big data era. The starting point is shifting forward from evidence to data. The big data technology is playing an active role in evidence's collection, process and utilization. Evidence is more objective, righteous, authentic, transparent and easier to collect. Thus, to initiate evidence-based medicine research in the big data era and to structure an evidence-based medicine intelligent service platform, a full-scaled strategy should be developed in order to improve the quality of evidence. To promote the complete publicity of clinical research data, structuralized clinical data standard should be constructed. To provide a pathway to patients' follow-up data, portable and wearable monitoring devices should be popularized. To avoid risks from utilization of clinical research big data, regulations of clinical data usage should be implemented.

关键词: 大数据; 循证医学; 临床研究; 智能服务平台

Key words: Big data; Evidence-based medicine; Clinical research; Intelligent service platform

引用本文: 阎小妍, 董冲亚, 姚晨. 大数据时代的循证医学研究. 中国循证医学杂志, 2017, 17(3): 249-254. doi: 10.7507/1672-2531.201701099 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Sackett DL, Richardson WS, Rosenberg W,et al. Evidence-based medicine: how to practice and teach. EBM second edition churchill livingstone: Edinburgh, 2000.
2. Schneeweiss S. Learning from big health care data. N Engl J Med, 2014, 370(23): 2161-2163.
3. Andreu-Perez J, Poon CC, Merrifield RD,et al. Big data for health. IEEE J Biomed Health Inform, 2015,19(4): 1193-1208.
4. 姚晨, 刘玉秀. 临床试验确证疗效时应注意的统计学问题. 中国循证医学杂志, 2005, 5(3): 242-245.
5. 姚晨, 阎小妍. 临床研究设计中的统计学考虑要点. 北京大学学报: 医学版, 2010, 42(6): 632-636.
6. 宋勇, 汪道远. 大数据时代临床研究的机遇与挑战. 医学研究生学报, 2014, 27(4): 337-339.
7. Wang SD. Opportunities and challenges of clinical research in the big-data era: from RCT to BCT. J Thorac Dis, 2013, 5(6): 721-723.
8. Duggal R, Khatri SK, Shukla B. Improving patient matching: single patient view for clinical decision support using big data analytic: Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), 2015 4th International Conference on IEEE.
9. 李静, 顾江. 个体化医疗和大数据时代的机遇和挑战. 医学与哲学, 2014, 35(1): 1-5.
10. Papolos A, Narula J, Bavishi C,et al. U.S. hospital use of echocardiography: insights from the nationwide inpatient sample. J Am Coll Cardiol, 2016, 67(5): 502-511.
11. Minikel EV, Vallabh SM, Lek M,et al. Quantifying prion disease penetrance using large population control cohortsJ. Sci Transl Med, 2016, 8(322): 322-329.
12. 国务院办公厅关于促进和规范健康医疗大数据应用发展的指导意见. 中国: 国务院办公厅, 2016. Available at: www.gov.cn/ zhengce/content/2016-06/24/content_5085091.htm.
13. 缪姝妹, 景慎旗. 江苏省人民医院临床数据中心系统的建设与应用, 2016. Available at: www.aidemed.com/news/457-cn.html.
14. Shaha SH, Sayeed Z, Anoushiravani AA,et al. Big data, big problems: incorporating mission, values, and culture in provider affiliations. Orthop Clin North Am, 2016, 47(4): 725-732.
15. Austin C, Kusumoto F. The application of Big Data in medicine: current implications and future directions. J Interv Card Electrophysiol. 2016, 47(1): 51-59.
16. Hudson KL, Lauer MS, Collins FS,et al. Toward a new era of trust and transparency in clinical trials. JAMA, 2016, 316(13): 1353-1354.
17. Taichman DB, Backus J, Baethge C,et al. Sharing clinical trial data-a proposal from the international committee of medical journal editors. N Engl J Med, 2016, 374(4): 384-386.
18. 韩晓丹, 金新政. 移动健康管理服务平台研究. 中国卫生信息管理杂志, 2015, 12(5): 459-462.